

A160833


G.f.: (1+62*x+569*x^2+1086*x^3+521*x^4+56*x^5+x^6)/(1x)^7.


1



1, 69, 1031, 6889, 29473, 95389, 255263, 595281, 1251025, 2423605, 4398087, 7564217, 12439441, 19694221, 30179647, 44957345, 65331681, 92884261, 129510727, 177459849, 239374913, 318337405, 417912991, 542199793, 695878961
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Source: the De Loera et al. article and the Haws website listed in A160747.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (7,21,35,35,21,7,1).


FORMULA

a(n) = 1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90.  R. J. Mathar, Sep 17 2011


MATHEMATICA

Table[1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90, {n, 0, 30}] (* or *) LinearRecurrence[{7, 21, 35, 35, 21, 7, 1}, {1, 69, 1031, 6889, 29473, 95389, 255263}, 30] (* G. C. Greubel, Apr 28 2018 *)


PROG

(MAGMA) [1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
(PARI) for(n=0, 30, print1(1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n +444)/90, ", ")) \\ G. C. Greubel, Apr 28 2018


CROSSREFS

Sequence in context: A160817 A160836 A160834 * A160831 A254683 A095255
Adjacent sequences: A160830 A160831 A160832 * A160834 A160835 A160836


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Nov 18 2009


STATUS

approved



